ATTACHMENT F

SWALES & ASSOCIATES, INC.

AEROSPACE ENGINEERING/STRUCTURAL ANALYSIS 5050 Powder Mill Road Beltsville, Maryland 20705 (301) 595-5500

May 4, 1994

Calibration Of MODIS PC HgCdTe Channels

I.L. Goldberg

Calibration Algorithms For PC HgCdTe Channels

LMS Quadratic Fit To Calibration Data

$$V_Q = A + B L_{EFF} + C L_{EFF}^2$$

 V_Q = signal voltage

 L_{EFF} = effective radiance (includes background)

$$L_{\rm EFF} = \tau_0 L_{\rm S} + (1+\delta)^2 \tau_{\rm CO} (1-\tau_{\rm WO}) L_{\rm B}$$

L_s=scene (signal) radiance

L_B=background Planck blackbody radiance

 τ_{co} = cold optics transmission

 τ_{wo} =warm optics transmission

 τ_0 =optical system transmission

$$1 + \delta = \frac{(f/)_S}{(f/)_B}$$

 $(f/)_s$ = optics port (signal) f-number

 $(f/)_B$ = effective background f-number

If the image quality does not change then A, B, and C are independent of the instrument temperature.

Derivation Of Expression For Effective Radiance

Voltage out of detector circuit depends on the <u>irradiance</u> at the detector. For a DC coupled circuit the voltage V across the load is

$$V = a + b(E_S + E_B) + c(E_S + E_B)^2$$

E_s=irradiance due to scene (signal)

E_B=irradiance due to background

$$E_{s} = \frac{\pi \tau_{0} L_{s}}{4(f/)_{s}^{2}}$$

$$E_{\rm B} = \frac{\pi \, \tau_{\rm CO} \, \epsilon_{\rm B} \, L_{\rm B}}{4 (f/)_{\rm B}^2}$$

 $\epsilon_{\rm B}$ = effective emissivity of background

Since cold optics radiance is insignificant for MODIS

$$\epsilon_{\rm B} = 1 - \tau_{\rm WO}$$

Let

$$1+\delta = \frac{(f/)_S}{(f/)_B}$$

$$E_{B} = \frac{\pi (1+\delta)^{2} \tau_{CO} (1-\tau_{WO}) L_{B}}{4(f/)_{S}^{2}}$$

$$E_{s}+E_{B} = \frac{\pi}{4(f/)_{s}^{2}} \left[\tau_{0} L_{s}+(1+\delta)^{2} \tau_{co} (1-\tau_{wo}) L_{B}\right] = \frac{\pi L_{EFF}}{4(f/)_{s}^{2}}$$

$$L_{\text{EFF}} = \tau_0 L_{\text{S}} + (1 + \delta)^2 \tau_{\text{CO}} (1 - \tau_{\text{WO}}) L_{\text{B}}$$
, Q.E.D.

Measurement Of Scene Radiance From Orbit

Use of the inverse calibration equation is convenient for orbital data.

$$L_{EFF} = x_0 + m x + q x^2$$

x=digital number (counts)

Note that x₀, m, and q are independent of instrument temperature.

Since
$$\tau_0 L_S = L_{EFF} - (1+\delta)^2 \tau_{CO} (1-\tau_{WO}) L_B$$

$$L_S = (x_0 + m x + q x^2 - \kappa L_B)/\tau_0$$

$$\kappa = (1+\delta)^2 (1-\tau_{WO}) \tau_{CO}$$

If the <u>additional</u> warm surfaces seen by the detector (beyond the optical port) radiate as blackbodies then κ must be replaced by

$$\kappa = \left[(1+\delta)^2 - \tau_{WO} \right] \tau_{CO}$$

Since $\tau_0 = \tau_{CO} \tau_{WO}$, either τ_0 or τ_{WO} must be measured as a function of instrument temperature.

On-Board Calibration

From the values of scene signal x_s and space signal x_{sp} the scene radiance L_s can be found without using the value of x_0 .

$$L_s = [m + q(x_s + x_{SP})](x_s - x_{SP})/\tau_0$$

Using the on-board blackbody radiance L_{BB} and associated signal x_{BB} the slope m can be found. Since q is a much slower varying function of detector responsivity than m, it can be considered constant (for a constant detector temperature).

$$m = [\tau_0 L_{BB} - q(x_{BB} + x_{SP})]/(x_{BB} - x_{SP})$$

Using this value of m the new value of x₀ becomes

$$x_0 = \tau_0 L_{BB} - m x_{BB} - q x_{BB}^2 + \kappa L_{BB}$$

Non-Linearity

Let L_M =maximum effective radiance in the instrument calibration with the corresponding voltage V_{M^2}

Define the reference line to lie be between the points L=0 (V=A) and $L=L_M$ on the LMS quadratic fit of the calibration data. Since

$$V_{M} = A + B L_{M} + C L_{M}^{2}$$

the slope of this reference line is B+CL_M. The equation of the reference line is

$$V_{L} = A + (B + CL_{M})L_{EFF}$$

At $L_{EFF} = L_M/2$ the difference between the voltage values of the quadratic fit (V_Q) and the reference line (V_L) is

$$V_{Q}-V_{L} = -CL_{M}^{2}/4$$

The non-linearity with respect to the reference line is

$$(NL)_{REF} = \left| (V_Q - V_L) / (V_L - A) \right| \quad \text{at } L_{EFF} = L_M / 2$$

$$= \left| \frac{CL_M^2 / 4}{(B + CL_M)L_M / 2} \right|$$

$$= \left| \frac{CL_M / 2}{B + CL_M} \right|$$

Since the system non-linearity (NL)s is approximately half this value

$$(NL)_{s} = \begin{vmatrix} z/4 \\ \hline 1+z \end{vmatrix}$$

$$z = CL_{M}/B$$

LMS QUADRATIC FIT TO CALIBRATION DATA

$$(NL)_{REF} = \frac{V_{\mathbf{Q}} \cdot V_{L}}{V_{L} \cdot A}$$

$$(NL)_s = 0.5(NL)_{REF}$$

3